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Abstract

We study the problem of offline changepoint localization, where the goal is to iden-
tify the index at which the data-generating distribution changes. Existing methods
often rely on restrictive parametric assumptions or asymptotic approximations, limit-
ing their practical applicability. To address this, we propose a distribution-free frame-
work, CONformal CHangepoint localization (CONCH), which leverages conformal
p-values to efficiently construct valid confidence sets for the changepoint. Under mild
assumptions of exchangeability within each segment and independence across segments,
CONCH guarantees finite-sample coverage. By proving a conformal Neyman–Pearson
Lemma, we derive principled score functions that yield narrow and informative confi-
dence sets. We further establish a universality result showing that any distribution-free
changepoint localization method can be viewed as an instance of CONCH. Experi-
ments on synthetic and real data confirm that CONCH delivers precise and reliable
confidence sets even in challenging settings.
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1 Introduction

In this paper, we study the problem of offline changepoint localization, where we are given
an ordered sequence of data and are told that the underlying data-generating distribution
has changed at some unknown index, called the changepoint. In this work, we assume
that there is a single changepoint. As a simple illustration, suppose that the data are
drawn independently from some distribution P0 before the changepoint and from a different
distribution P1 ̸= P0 thereafter. The objective is to localize the changepoint, i.e., give a
confidence set that contains this changepoint with high probability.

Changepoint localization is substantially more challenging than the related task of change-
point detection: merely identifying whether a change has occurred. Yet in domains such as
operations engineering, econometrics, and biostatistics, the ability to retrospectively pinpoint
the time of distributional change is often critical. Consider, for instance, a manufacturing
context: quality measurements of a component may remain stable until a machine begins to
malfunction, after which the measurements exhibit a systematic shift. Once the production
batch has concluded, it becomes essential to determine when this shift first arose in order to
diagnose the source of the malfunction and implement corrective measures.

1.1 Existing approaches

Offline changepoint analysis has been extensively studied due to its wide practical relevance;
see Truong et al. [2020], Duggins [2010] for surveys. Classical methods such as CUSUM [Page,
1955] and conformal martingales [Vovk et al., 2003] primarily address the online detection
problem rather than retrospective localization.

Likelihood-based procedures assume specific parametric models (e.g., Gaussian mean-shift,
linear regression) [Kim and Siegmund, 1989, Quandt, 1958, Gurevich and Vexler, 2006] and
mostly focus on detection. More recent post-detection localization techniques [Saha and
Ramdas, 2025] still rely on restrictive model assumptions, such as known and non-overlapping
pre-change and post-change families.

Several nonparametric methods achieve localization only asymptotically, including SMUCE
[Frick et al., 2014], regression-based approaches [Xu et al., 2024], and Gaussian mean-shift
intervals [Fotopoulos et al., 2010], among others [Bhattacharyya and Johnson, 1968, Zou
et al., 2007]. The construction in Verzelen et al. [2023] attains theoretical optimality but
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involves non-computable constants, limiting practical use.

Bootstrap-based approaches [Cho and Kirch, 2022] target mean shifts but lack finite-sample
validity and are computationally intensive. Rank-based nonparametric tests [Pettitt, 1979,
Ross and Adams, 2012] are distribution-free for detection but do not provide confidence sets
for localization and often have low power without additional structure. Multi-changepoint
algorithms [Anastasiou and Fryzlewicz, 2022, Truong et al., 2020] typically adopt “isolate-
detect” strategies and return only point estimates.

Conformal martingale methods [Vovk et al., 2003, Volkhonskiy et al., 2017, Vovk, 2021,
Vovk et al., 2021, Nouretdinov et al., 2021, Shin et al., 2023] provide powerful tools for
online detection but do not yield confidence sets for localization. Recently, MCP localization
[Dandapanthula and Ramdas, 2025] introduced the first truly distribution-free approach to
changepoint localization using a matrix of conformal p-values. In practice, however, it often
produces wider confidence intervals than appear to be necessary, motivating the need for
sharper, yet valid, distribution-free alternatives.

Overall, existing approaches are constrained by model assumptions, focus mainly on detec-
tion rather than localization, or trade statistical efficiency for distribution-free validity. In
this work, we close this gap by proposing a simple yet principled framework for change-
point localization that is fully distribution-free, finite-sample valid, and yields informative
confidence sets. The formal objective of distribution-free confidence sets is introduced in
Section 2.

1.2 Our contributions

The main contributions of this work are summarized below:

• We introduce CONCH (CONformal CHangepoint localization), a framework that,
given any Rn−1-valued changepoint plausibility measure S and a confidence level 1−α,
produces a finite-sample valid confidence set for the changepoint without making any
restrictive assumptions on the pre- and post-change distributions.

• While our framework is valid for any choice of score function, offering great flexibility to
the user, its statistical performance can be substantially improved by employing scores
tailored to the problem in hand. We propose practically applicable ‘near-optimal’
score functions that yield the narrowest confidence sets, based on a novel “Conformal
Neyman–Pearson” lemma, which may be of independent interest.
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• We show that CONCH has a universality property: any distribution-free confidence set
is an instance of our framework. Moreover, we provide a simple calibration procedure
that can turn any heuristic changepoint localization methods into a truly distribution-
free, valid confidence set.

• We demonstrate the practical utility of CONCH on diverse synthetic and real-world
datasets. In particular, our method can wrap around any black-box classifier trained to
distinguish pre- and post-change samples, producing informative confidence sets even
when the change is subtle.

Organization of the paper. The rest of the paper is organized as follows. In Section 2
we formally define the problem of distribution-free changepoint localization. Section 3 intro-
duces our general framework, CONCH, and give algorithms for its practical implementation.
In Section 4, we provide guidance on selecting score functions that would yield narrow con-
fidence sets. Section 5 establishes a universality result for CONCH, and Section 6 builds
on this foundation to introduce a calibration procedure that turns any localization method
into a valid distribution-free one. Section 7 then presents empirical evaluations on synthetic
and real datasets, demonstrating the applicability of our framework.

2 Distribution-free changepoint localization

In this section, we formally describe the problem of distribution-free offline changepoint
localization. We begin by introducing some notation. Throughout the paper, N denotes the
set of natural numbers, and for K ∈ N we write [K] := {1, . . . , K}. For any set S, letM(S)
denote the collection of probability measures on S and let 2S denote the power set of S.
Finally, we use d= to denote equality in distribution.

With this notation in place, consider an ordered sequence of X -valued random variables
X = (X1, . . . , Xn) for some n ∈ N. We assume that there exists an unknown changepoint
ξ ∈ [n− 1] such that

(X1, . . . , Xξ) ∼ P0,ξ, (Xξ+1, . . . , Xn) ∼ P1,ξ,

where P0,ξ ∈ M(X ξ) and P1,ξ ∈ M(X n−ξ) denote the pre-change and post-change distri-
butions, respectively. We write the joint distribution as P = P0,ξ × P1,ξ. In line with the
distribution-free perspective, we impose no structural assumptions on P0,ξ or P1,ξ beyond
the following.
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Assumption 1. P0,ξ and P1,ξ are exchangeable. Specifically, for any permutations πL :
[ξ]→ [ξ] and πR : [n] \ [ξ]→ [n] \ [ξ], it holds that

(X1, . . . , Xξ) d= (XπL(1), . . . , XπL(ξ)), (Xξ+1, . . . , Xn) d= (XπR(ξ+1), . . . , XπR(n)).

Moreover, the pre-change and post-change segments are independent: P0,ξ ⊥ P1,ξ.

In words, Assumption 1 requires that the distribution of X is invariant under arbitrary
permutations of the entries to the left of ξ and, independently, under permutations of those
to its right. A canonical example, mentioned in the introduction, is the i.i.d. changepoint
model: the pre-change observations (X1, . . . , Xξ) are i.i.d. from some P0, and independently,
the post-change observations (Xξ+1, . . . , Xn) are i.i.d. from some P1.

For any t ∈ [n−1], let H0,t denote the hypothesis that t is the true changepoint and that the
distributions P0,t and P1,t satisfy Assumption 1. We write Pt and Et to denote probability
and expectation, respectively, under this model class. We can now formally define what it
means to construct a distribution-free confidence set for the changepoint.

Definition 1. Fix α ∈ (0, 1). A mapping C1−α : X n → 2[n−1] is called a distribution-free
confidence set for changepoint at level 1− α if

Pξ( ξ ∈ C1−α(X) ) ≥ 1− α. (2.1)

Assumption 1 is considerably weaker than the working assumptions underlying most exist-
ing changepoint localization methods reviewed in Section 1.1. Prior approaches typically
rely on strong parametric models or asymptotic approximations, highlighting the minimal
nature of our assumption. While some recent methods [Dandapanthula and Ramdas, 2025]
offer distribution-free guarantees under similarly mild conditions, they generally yield dif-
fuse confidence sets. Our approach instead achieves sharper localization while retaining
finite-sample validity, making it a significant contribution in this direction. The next section
formally introduces our method and its main components.

3 Conformal changepoint localization

This section develops a conformal framework for localizing a changepoint. Conformal p-
values, originally introduced by [Vovk et al., 1999, Shafer and Vovk, 2008] in the context of
distribution-free predictive inference, have since been extended to a wide range of problems
including outlier detection [Bates et al., 2023], post-prediction screening [Jin and Candès,
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2023], and conditional two-sample testing [Wu et al., 2024], among others. Building on these
developments, we adapt conformal p-values to the changepoint localization problem in an
efficient manner, yielding confidence sets for the changepoint with guarantees as in (2.1).

3.1 General framework of CONCH algorithm

Algorithm 1: CONCH: conformal changepoint localization algorithm
Input: (Xt)n

t=1 (dataset) and S : X n → Rn−1 (CPP score function)
Output: C CONCH

1−α (CONCH confidence set at level 1− α)
1 for t ∈ [n− 1] do
2 Πt ← {π ∈ Sn : for all i ≤ t, π(i) ≤ t and for all i > t, π(i) > t};
3 foreach π ∈ Πt do
4 Evaluate St(π(X));
5 end
6 pt ← 1

|Πt|
∑

π∈Πt
1 {St(π(X)) ≤ St(X)};

7 end
8 C CONCH

1−α ← { t ∈ [n− 1] : pt > α };
9 return C CONCH

1−α

Building upon the machinery of conformal p-values, we first present the general framework
for distribution-free changepoint localization, namely the Conformal changepoint localization
(CONCH) algorithm. Our framework relies on two key components:

• ChangePoint Plausibility (CPP) score: We call any mapping S : X n → Rn−1

a changepoint plausibility score. Intuitively, for each candidate index t ∈ [n − 1],
St assigns a score to quantify the chance that t is indeed a changepoint; a larger St

indicates a stronger plausibility of t being a changepoint.

• Split-permutation group: For any t ∈ [n−1], define the reduced set of permutations

Πt :=
{

π ∈ Sn : π(i) ≤ t for all i ≤ t, π(i) > t for all i > t
}

. (3.1)

Any π ∈ Πt freely permutes indices to the left and right of t independently while never
mixing across the split.

Note that, if t is indeed the true changepoint, elements of Πt preserve the pre-change and
post-change exchangeability. Our framework crucially depends on this observation. More
precisely, starting from any user-specified CPP score S, we define a conformal p-value pt

for each index t ∈ [n − 1] by looking at the normalized rank of St(X) within the set of all
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permuted scores, {St(π(X)) : π ∈ Πt}, i.e.,

pt := 1
|Πt|

∑
π∈Πt

1 {St(π(X)) ≤ St(X)} . (3.2)

Intuitively, underH0,t, every permutation π ∈ Πt is equally likely, or equivalently, pt is super-
uniform under the null H0,t, a result we formally establish in Theorem 3.1. The changepoint
confidence set is then given by thresholding these p-values at level α:

C CONCH
1−α := {t ∈ [n− 1] : pt > α},

which attains the distribution-free validity in (2.1).

Theorem 3.1. For each t ∈ [n], pt defined in (3.2) is a valid p-value under H0,t. In
particular, for any α ∈ (0, 1), Pξ (pξ ≤ α) ≤ α. Consequently, CCONCH

1−α is a distribution-free
confidence set for changepoint.

3.2 CONCH-MC: randomized approximation for scalability

To compute the CONCH p-value pt in (3.2), one must enumerate all permutations in Πt

and compute the corresponding score St(π(X)) for each π. For large n, this may be com-
putationally expensive. That being said, here is a quick remedy: to improve efficiency, we
may sample π(1), . . . , π(M) i.i.d.∼ Unif(Πt), and then use a Monte Carlo approximation to pt, in
particular,

p̃t :=
1 +∑M

k=1 1
{
St(π(k)(X)) ≤ St(X)

}
1 + M

. (3.3)

This yields the randomized confidence set { t ∈ [n− 1] : p̃t > α }. We refer to this procedure
as CONCH-MC, presented formally in Algorithm 2. Similar to the underlying principle of
CONCH, any randomly sampled π ∈ Πt preserves pre-change and post-change exchange-
ability under H0,t, thereby providing us with a valid p-value p̃t, as we establish formally
in Theorem 3.2. For brevity, the proofs of Theorem 3.1 and Theorem 3.2 are deferred to
Appendix A.1.

Theorem 3.2. For any t ∈ [n], pt defined in (3.3) is a valid p-value under H0,t. In par-
ticular, for any α ∈ (0, 1), Pξ(p̃ξ ≤ α) ≤ α. Consequently, CCONCH-MC

1−α is a distribution-free
confidence set for changepoint.

Remark 1. We highlight that the CONCH algorithm does not impose any restriction on
the choice of CPP score, thereby providing significant flexibility for users to design their
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Algorithm 2: CONCH-MC: CONCH with random permutations
Input: (Xt)n

t=1 (dataset), M (number of permutations) and S : X n → Rn (CPP
score function)

Output: C CONCH-MC
1−α (CONCH-MC confidence set at level 1− α)

1 for t ∈ [n− 1] do
2 Πt ← {π ∈ Sn : for all i ≤ t, π(i) ≤ t and for all i > t, π(i) > t};
3 for k ∈ [M ] do
4 Sample π(k) ∼ Πt;
5 Evaluate St(π(k)(X));
6 end
7 p̃t ← 1

M+1

(
1 +∑M

k=1 1
{
St(π(k)(X)) ≤ St(X)

})
;

8 end
9 CCONCH-MC

1−α ← {t ∈ [n− 1] : p̃t > α}
10 return CCONCH-MC

1−α

own plausibility measure. In particular, the score function may depend non-trivially on the
entire sequence (X1, . . . , Xn). For readers familiar with the distinction between full and split
conformal methods in the setting of predictive inference, this corresponds to an adaptation
of the full conformal approach to the changepoint localization setting.

3.3 Exact validity of CONCH confidence sets

While both p-values pt and p̃t in (3.2) and (3.3) control the Type I error under H0,t at
level α, it is sometimes desirable to attain exact level-α validity. Achieving exact validity can
yield more powerful or sharper procedures. To this end, we introduce a simple randomized
refinement of the p-values that guarantees exact validity. Specifically, define

p̄t := 1
|Πt|

∑
π∈Πt

1 {St(π(X)) < St(X)}+ U · 1
|Πt|

∑
π∈Πt

1 {St(π(X)) = St(X)} , (3.4)

where U ∼ Unif[0, 1]. Plugging these randomized p-values into the general CONCH frame-
work yields the confidence set C̄CONCH

1−α = { t ∈ [n − 1] : p̄t > α }, which attains confidence
exactly 1− α, as formalized below.

Theorem 3.3. For each t ∈ [n − 1], p̄t defined in (3.4) is a valid p-value under H0,t. In
particular, for any α ∈ (0, 1),

Pξ(p̄ξ ≤ α) = α.

Consequently, Pξ

(
ξ ∈ C̄CONCH

1−α

)
= 1− α.
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4 Guidelines for choosing the CPP score

Both CONCH and CONCH-MC retain validity as in (2.1) for any choice of CPP score,
offering substantial flexibility in constructing valid confidence sets. This, however, naturally
raises the question: how should one choose a score that yields narrow and informative sets?
In what follows, we establish a few general properties of CPP scores, derive an optimal score,
which in turn depends on oracle knowledge. Finally, we give concrete proposals of practical
score functions that closely mimic this ideal. Proofs of all results in this section are deferred
to Appendix A.2.

We begin with two general properties that explain the influence of CPP score on the resulting
CONCH set.

Proposition 4.1. Fix n ∈ N and α ∈ (0, 1).

(i) (Symmetry yields trivial p-values). Fix t ∈ [n − 1]. If the t-th component St of
the CPP score satisfies

St(·) = St(π(·)) for every π ∈ Πt, (4.1)

then the p-values pt and p̃t defined in (3.2) and (3.3) are identically 1. Consequently,

P
(
t ∈ CCONCH

1−α

)
= P

(
t ∈ CCONCH-MC

1−α

)
= 1.

(ii) (Conformal data-processing inequality). Let C1 denote the CONCH (or CONCH-
MC) confidence set at level 1 − α based on a CPP score S, and let {p1,1, . . . , pn−1,1}
be the corresponding conformal p-values. For any non-decreasing function f : R→ R,
let C2 be the CONCH confidence set at the same level based on the transformed score
f(S), with corresponding conformal p-values {p1,2, . . . , pn−1,2}. Then,

pt,1 ≤ pt,2 for all t ∈ [n− 1],

and consequently C1 ⊆ C2.

Part (i) of the proposition shows that t-wise symmetry, i.e., (4.1), yields trivial conformal
p-values regardless of whether H0,t holds, and therefore leads to overly conservative sets;
therefore, such scores should be avoided in practice. Part (ii) of the result establishes a
monotonicity property of CONCH: applying any non-decreasing transformation can only
enlarge the set. In particular, any strictly increasing transformation on the CPP score leaves
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the confidence set unchanged. These properties help us make practical choices of the CPP
score that yield meaningful confidence sets in practice.

For the remainder of this section, we focus on the canonical setting, namely the i.i.d. change-
point model. Specifically, let PIID denote the class of distributions for which there exists
ξ ∈ [n− 1] such that

P0,ξ = ⊗ξ
t=1P0, P1,ξ = ⊗n

t=ξ+1P1,

where P0 and P1 admit densities f0 and f1 with respect to a common dominating measure
ν on X .

4.1 Optimal CPP score function

In this section, we establish the optimal CPP score function, assuming the knowledge of
both densities f0, f1, and the true changepoint ξ. By framing the task of identifying an
optimal score as a testing problem involving a point null and a point alternative, we can
directly apply the classical Neyman–Pearson (NP) lemma. This yields a similar optimality
result tailored to the setting of distribution-free changepoint localization, which we call the
second Conformal NP Lemma. The first instance of such a Conformal NP Lemma appears
in Dandapanthula and Ramdas [2025], which establishes an analogous NP optimality result
for a conformal p-value-based changepoint test.

For any t ∈ [n − 1], we write H′
t : X ∼ ⊗t

j=1P0 × ⊗n
j=t+1P1 to hypothesize that t is the

changepoint under the model class PIID. Suppose we want to test the nullH′
t using conformal

p-values. In particular, we take a score function s : X n → R, and define the conformal p-value

pt(s) = 1
|Πt|

∑
π∈Πt

1 {s(π(X)) < s(X)}+ U · 1
|Πt|

∑
π∈Πt

1 {s(π(X)) = s(X)} , (4.2)

where U ∼ Unif[0, 1]. By Theorem 3.3, pt(s) is a valid p-value under H′
t. Consequently,

ϕt(X; s) = 1 {pt(s) ≤ α)}

is a valid test at level α for the null H′
t with any score function s.

Observe that the test intuitively rejects when the score on the original data is relatively
smaller than its permuted counterparts. Motivated by this, we seek an optimal score s⋆

such that the corresponding test ϕt(X; s⋆) achieves maximum power against an alternative
H′

r (with r ̸= t), which posits that r rather than t is the true changepoint. Equivalently,
we aim to identify a score s⋆ that tends to take smaller values under the alternative. In

11



line with this intuition, the Conformal Neyman–Pearson lemma, stated below, formally
establishes that the likelihood ratio s⋆(·) = PH′

t
(·)/PH′

r
(·) defines the optimal test.

Lemma 4.2 (Conformal NP lemma). Fix t, r ∈ [n−1] with t ̸= r. The power, EH′
r
[ϕt(X; s)],

is maximized by the score function

s⋆(x1, . . . , xn) :=
∏

i≤t f0(xi)
∏

i>t f1(xi)∏
i≤r f0(xi)

∏
i>r f1(xi)

.

Finally, the Conformal NP lemma can be leveraged within the CONCH framework to derive
the CPP score that would yield the narrowest confidence set. We observe that the conformal
p-value in (3.2) must be valid underH0,t, while be sufficiently small to sharply detect the true
changepoint ξ ̸= t under H0,ξ. Since only the t-th component of CPP score, St, determines
pt, the task of optimizing St boils down to finding the optimal test for H′

t v.s H′
ξ.

We make this connection precise in the theorem below. For notational convenience, we write
CCONCH

1−α (S) to denote the CONCH confidence set constructed with CPP score S.

Theorem 4.3. Any strictly increasing transformation of the CPP score SOPT defined by

SOPT
t (x1, . . . , xn) =

∏
i≤t f0(xi)

∏
i>t f1(xi)∏

i≤ξ f0(xi)
∏

i>ξ f1(xi)
(4.3)

achieves the minimum expected length of the CONCH confidence set. In particular, for any
score function S : X n → Rn−1,

EH0,ξ ∩ PIID

[
|C̄CONCH

1−α (S)|
]
≥ EH0,ξ ∩ PIID

[
|C̄CONCH

1−α (SOPT)|
]
.

The optimal CPP score function (4.3) depends on the unknown pre-change and post-change
densities f0 and f1 as well as the true changepoint ξ, and is therefore not directly imple-
mentable in practice. In the next subsection, we propose score functions that closely mimic
the optimal score, thus providing ‘near-optimal’ performance in practice.

4.2 Practical choices for CPP score

Motivated by the Conformal NP lemma, we now describe a few principled choices for CPP
scores in this setting.
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(1) Weighted mean difference. If densities f0 and f1 differ merely by a location shift,
a natural CPP score is given by

St(x1, · · · , xn) =
∣∣∣∣∣
∑t

i=1 wt,ixi∑t
i=1 wt,i

−
∑n

i>t wt,ixi∑n
i>t wt,i

∣∣∣∣∣ . (4.4)

The weights {wt,i} are introduced to break the t-wise symmetry property, (4.1), and therefore
to avoid trivial confidence sets. Intuitively, observations closer to the t-th index should receive
more weight when defining the score at t. Common choices for weights include:

wt,i = 1− |i− t|
n

or wt,i = exp
(
−|i− t|/n

)
.

If t ∈ [n− 1] is believed to be a changepoint, the weighted means on the left and right sides
should differ substantially, producing a high CPP score at t as required.

(2) Oracle log likelihood-ratio (LLR). Suppose f0 and f1 are known. Then, the optimal
CPP score function in (4.3) can be approximated by evaluating the complete likelihood at
MLE t̂ instead of the true changepoint ξ. Therefore, we may take the CPP score given by

St(x1, · · · , xn) = log
(∏

i≤t f0(xi)
∏

i>t f1(xi)∏
i≤t̂ f0(xi)

∏
i>t̂ f1(xi)

)
, (4.5)

where
t̂ := argmax

s∈[n−1]
log
(∏

i≤s

f0(xi)
∏
i>s

f1(xi)
)

is the MLE estimate of the changepoint. If t ∈ [n − 1] is indeed the changepoint, then
t̂ ≈ t and St will be large, indicating strong plausibility for a change. Since this score closely
approximates (4.3), it is expected to sharply localize the true changepoint, as verified in our
experiments too.

(3) Learned LLR. When f0 and f1 are unknown, for each t ∈ [n − 1], one can plug in
estimates (parametric or non-parametric) f̂t,0 and f̂t,1, and instead consider the CPP score
given by

St(x1, · · · , xn) = log
∏i≤t f̂t,0(xi)

∏
i>t f̂t,1(xi)∏

i≤t̃ f̂t̃,0(xi)
∏

i>t̃ f̂t̃,1(xi)

 (4.6)

with t̃ = argmaxs∈[n−1] log
(∏

i≤s f̂s,0(xi)
∏

i>s f̂s,1(xi)
)

being the corresponding MLE.

13



(4) Classifier based LLR. Instead of estimating the densities f0 and f1 directly, one can
train a binary classifier ĝ to distinguish post-change from pre-change samples (labeled Y = 1
and Y = 0, respectively). By Bayes’ rule, we have

log f1(x)
f0(x) = log P(Y = 1|X = x)

P(Y = 0 | X = x) − log π1

π0
,

where π1 and π0 are class priors. If ĝ is trained on balanced data and we write ĝ(x) ∈
(0, 1) to denote the predicted probability of post-change membership, then we obtain the
approximation

log f1(x)
f0(x) ≈ logit ĝ(x) := log ĝ(x)

1− ĝ(x) .

The log odds components in (4.5) can then be approximated by the classifier logits to define
a practically implementable CPP score. While the choice of classifiers does not affect the
validity of our method, a well-trained classifier improves power.

5 Universality of the CONCH algorithm

In earlier sections, we have established CONCH as a flexible framework for constructing
distribution-free confidence sets for the changepoint. One may naturally ask: is CONCH
one of many such distribution-free approaches, or does it truly capture the full class of
distribution-free changepoint localization methods? In this section, we give a conclusive
answer to this question. In fact, we establish a universality property of CONCH, which
states that any procedure satisfying the coverage guarantee in (2.1) can be realized as an
instance of our CONCH framework.

Theorem 5.1. Fix α ∈ (0, 1). Let C be any procedure that maps a dataset X to a confidence
set C(X) such that

Pξ

(
ξ ∈ C(X)

)
≥ 1− α.

Then there exists a CPP score function S : X n → Rn−1 such that the distribution-free
confidence set C coincides exactly the set CCONCH

1−α constructed with the score S.

The proof of this theorem is provided in Appendix A.3. This result establishes CONCH
as a canonical framework for distribution-free changepoint inference: a particular choice
of CPP score leads to a specific instance within the universal class of valid procedures for
changepoint localization.

Moreover, it provides a practical recipe for calibrating any heuristic confidence set. In par-
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ticular, confidence sets constructed from model-based or resampling-based methods, whether
or not they are asymptotically valid, can be “wrapped” to obtain rigorous distribution-free
guarantees. We formalize this calibration procedure in the next section.

6 Calibration of heuristic confidence sets

Suppose we are given a confidence set C : X n → 2[n−1] that may or may not be valid, even
asymptotically. For instance, it could be one obtained from a Bayesian or bootstrap-based
method. Guided by the general CONCH framework, we can construct a CPP score function
from such a set and thereby obtain a distribution-free, finite-sample valid confidence set. Two
natural constructions of CPP score are as follows:

• Set membership score. Define St(x1, . . . , xn) = 1 {t ∈ C(x1, . . . , xn)}, which records
only whether t is included in the given confidence set.

• Set distance score. Define St(x1, . . . , xn) = minℓ∈C(x1,...,xn) |t − ℓ|, which refines the
membership score by measuring the distance of t to the nearest index in the set.

Running the CONCH algorithm with either score yields a valid confidence set by Theo-
rem 3.1. Moreover, by Proposition 4.1 (ii), the set distance score always produces a narrower
confidence set than the set membership score.

However, both score functions are relatively coarse and often lead to wide confidence sets.
In particular, for indices close to n or 0, these scores frequently induce t-wise symmetry (cf.
(4.1)), resulting in artificially inflated p-values in that region (by Proposition 4.1 (i)). Since
this behavior is undesirable in practice, we next introduce a more informative CPP score
that yields sharper confidence sets.

Most existing model-based or resampling-based approaches produce a point estimate t0.
Moreover, in many cases, they first construct a p-value function pval : X n → [0, 1]n−1,
which is then thresholded to form the confidence set C. Both components (t0, pval) can be
combined to define a more informative CPP score,

Ŝt(x1, . . . , xn) = pval(x1, . . . , xn; t)
pval(x1, . . . , xn; t0)

. (6.1)

Applying CONCH with this score yields what we refer to as the CONCH-CAL algorithm,
formally presented in Algorithm 3. By construction, this produces a valid distribution-
free confidence set while retaining the original method’s assessment of the changepoint. In
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Algorithm 3: CONCH-CAL: CONCH calibration algorithm
Input: (Xt)n

t=1 (dataset), t0 ∈ [n− 1] (point estimate), and pval : X n → [0, 1] n−1

(p-value function)
Output: C CONCH-CAL

1−α (CONCH-CAL confidence set at level 1− α)
1 Define Ŝ : X n → Rn−1 as in (6.1) ;
2 for t ∈ [n− 1] do
3 Compute CONCH p-value pt as in (3.2) with St replaced by Ŝt;
4 end
5 C CONCH-CAL

1−α ← { t ∈ [n− 1] : pt > α };
6 return C CONCH-CAL

1−α

practice, this allows analysts to exploit the strengths of bootstrap or Bayesian methods, such
as their interpretability, while simultaneously ensuring exact finite-sample coverage.

We note that the point estimate t0 depends on the ordered sequence (x1, . . . , xn), and thus
the denominator pval(·, . . . , ·; t0) is not invariant under permutations. Although one could in
principle use pval(·, . . . , ·; t) directly as the CPP score in CONCH, this approach typically
inherits the same shortcomings observed with set-membership and set-distance scores, and
yields a conservative confidence set.

7 Experiments

In this section, we evaluate the performance of CONCH through a series of experiments, in-
cluding synthetic simulations and applications to real datasets involving images (CIFAR-100,
MNIST, DomainNet), text (SST-2). Throughout this section, when we refer to CONCH
confidence sets, we specifically mean those obtained using the CONCH-MC algorithm (Al-
gorithm 2), as one would in practice. Across all these settings, the CONCH framework
consistently produces informative and narrow confidence sets, sharply localizing the change-
point.

7.1 Numerical simulations

7.1.1 Detecting Gaussian mean-shift

We begin with the most well-studied setting for changepoint analysis, namely the Gaussian
mean-shift model, to illustrate the behavior of our proposed CONCH framework. Specifi-
cally, we generate a sequence of n = 1000 i.i.d. observations with a changepoint at ξ = 400:
the pre-change distribution is P0,ξ = ⊗ξ

t=1N (−1, 1), while the post-change distribution is
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P1,ξ = ⊗n
t=ξ+1N (1, 1). In this setup, changepoint localization reduces to detecting a mean

shift in the Gaussian family with scale parameter 1.

We evaluate CONCH using four choices of CPP scores, introduced earlier in Section 4.2:

(i) weighted mean difference, with a specified weight function,

(ii) oracle log-likelihood ratio (LLR),

(iii) parametrically learned LLR, assuming knowledge of the Gaussian family,

(iv) nonparametrically learned LLR, using kernel density estimates.
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Figure 1: Distribution of conformal p-values under the Gaussian mean-shift model for dif-
ferent methods.

Figure 1 displays the distribution of the resulting p-values produced by each method. CONCH
produces sharply localized confidence sets across all score choices. The weighted-mean score
results in the widest interval, [385, 408], whereas all three LLR-based scores (oracle, paramet-
rically learned and non-parametrically learned) yield a much narrower set {397, 398, 400}.

Overall, these results highlight two key features: (i) the validity of CONCH is preserved
regardless of the choice of score, and (ii) more informative scores lead to substantially sharper
localization.

Appendix B.1 presents an additional comparison between the CONCH intervals and those
from Dandapanthula and Ramdas [2025].

7.1.2 Refinement of resampling-based confidence sets using CONCH-CAL

We demonstrate that the CONCH-CAL procedure (Algorithm 3) can refine confidence sets
that were not originally designed with distribution-free validity guarantees. The Gaussian
mean-shift model has been extensively studied, and several bootstrap-based methods provide
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asymptotically valid intervals that perform well in practice. However, under mild model
misspecification, these intervals can become overly wide or may miss the true changepoint ξ.

If a confidence set is valid, then the set-membership score from Section 6 should reproduce
the same set. In contrast, CONCH-CAL leverages p-values, and a finer notion of CPP score
building on them. This provides a principled mechanism to recalibrate and refine existing
confidence sets, thereby yielding sharper, distribution-free intervals.

In both experiments, we use the same residual bootstrap scheme to construct the initial
confidence sets: for each replicate, the changepoint is re-estimated on a resampled se-
quence formed from centered residuals, producing an empirical distribution of τ̂ from which
percentile-based intervals and p-values are obtained.

We consider two settings: (i) the Gaussian mean-shift model with n = 500 and ξ = 200,
where P0,ξ = ⊗ξ

t=1N (−1, 3) and P1,ξ = ⊗n
t=ξ+1N (1, 3), and (ii) a Laplace mean-shift model

with n = 500 i.i.d. observations and the same changepoint, where P0,ξ = ⊗ξ
t=1 Laplace(−1, 3)

and P1,ξ = ⊗n
t=ξ+1 Laplace(1, 3).
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Figure 2: Refinement of bootstrap-based confidence sets using CONCH-CAL under Gaus-
sian and Laplace mean-shift models.

In the Gaussian case, the bootstrap interval [180, 224] is refined by CONCH-CAL to a tight
and accurate interval [197, 205]. In the Laplace case, the bootstrap interval [140, 258], inflated
by heavy-tailed noise, is reduced to [196, 202] after calibration. The bootstrap p-values in
the Laplace setting are notably more spread out, while those from CONCH-CAL remain
sharply concentrated near the true changepoint, highlighting its robustness and stability
across distributional regimes.
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7.2 Real data experiments

7.2.1 DomainNet: detecting domain shift

In this experiment, we tackle the problem of detecting a domain shift using the publicly
available DomainNet dataset [Peng et al., 2019], which consists of six diverse domains (real,
sketch, painting, clipart, infograph, and quickdraw). Among these, we use the real and sketch
domains to construct a changepoint detection setting. Moreover, we convert all images to
grayscale to remove color cues and further increase the similarity between classes. Specifi-
cally, before the changepoint (ξ = 350), we observe samples from the real domain, and after
ξ, we observe samples from the sketch domain, totaling 800 samples (Figure 3).

344 | real
alarm_clock

345 | real
ambulance

346 | real
ambulance

347 | real
ambulance

348 | real
The_Eiffel_Tower

349 | real
aircraft_carrier

350 | sketch
The_Eiffel_Tower

351 | sketch
ambulance

352 | sketch
ambulance

353 | sketch
alarm_clock

354 | sketch
ambulance

355 | sketch
The_Great_Wall_of_China

Context around =350  (real  sketch domain shift)

Figure 3: Illustration of the DomainNet changepoint setup: samples switch from the real
to the sketch domain at ξ = 350 (n = 800). Images are drawn from the DomainNet
dataset, which was collected via online search; class labels may not perfectly align with
visual semantics, making the domain-shift detection problem more challenging.

We first train a CNN-based classifier to distinguish real images from hand-drawn sketches.
Although the classifier provides substantial discriminative information, it does not directly
translate into distribution-free guarantees for changepoint localization. The CONCH frame-
work bridges this gap by converting classifier outputs into a principled, distribution-free
procedure, yielding a narrow confidence set [350, 351] that consistently contains the true
changepoint (Figure 4).

7.2.2 SST-2: detecting sentiment change using large language models

We next demonstrate our method on text data, showing that it can localize changepoints in
language settings. Using the Stanford Sentiment Treebank (SST-2) dataset of movie reviews
labeled with binary sentiment [Socher et al., 2013], we simulate a shift from predominantly
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Figure 4: p-values for domain shift detection between real and sketch domains: classifier
scores (left) and CONCH p-values (right)

positive to negative sentiment. Such a setup mirrors real-world scenarios, e.g., detecting
changes in customer feedback or public opinion.

We observe n = 1000 reviews with a changepoint at ξ = 400: before ξ, reviews are i.i.d.
positive (P0); after ξ, reviews are i.i.d. negative (P1). For example:

• t = 399 (positive): “juicy writer”

• t = 400 (positive): “intricately structured and well-realized drama”

• t = 401 (negative): “painfully ”

• t = 402 (negative): “than most of jaglom’s self-conscious and gratingly irritating films”

First, we find a DistilBERT model fine-tuned for sentiment classification [Sanh et al., 2019],
and then the corresponding model logits are used to build a CPP score for our CONCH
method, which yields a 95% confidence set [400, 401] (Figure 5, left panel), effectively pin-
pointing the changepoint. Even under a subtler scenario, where sentiment shifts only from
60% positive to 40% positive, we obtain a nontrivial 95% confidence set [326, 463] (Figure 5,
right panel), demonstrating sharp localization of the changepoint in complex settings.

Additional experiments Appendix B presents several supplementary experiments cov-
ering a range of changepoint detection settings. We begin with a simple two-urn model to
illustrate urn-shift detection, followed by detecting a shift in digit class using MNIST hand-
written digits, and a class shift on the CIFAR-100 dataset to demonstrate the robustness
and flexibility of our approach.
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Figure 5: CONCH p-values for sentiment shift in SST-2: from positive to negative reviews
at ξ = 400 (left), and from 60% positive to 40% positive (right).

8 Conclusion

In this work, we introduced CONCH, a novel framework for distribution-free offline change-
point localization. Our approach leverages conformal p-values to construct confidence sets
with finite-sample distribution-free guarantees. We provided several design guidelines, in-
cluding principled choices of score functions and a Monte Carlo approximation to the full-
permutation p-value, which enhance both the power and practicality of the framework. We
further established a universality result, positioning CONCH as a canonical method for
distribution-free offline changepoint localization, and proposed a simple calibration proce-
dure that can wrap around any localization algorithm to yield valid confidence sets.

While this work has focused on the single-changepoint setting, many real-world problems in-
volve multiple changepoints. Although we do not address this here, we expect that techniques
such as wild binary segmentation [Fryzlewicz, 2014] could be adapted to extend CONCH
to the multiple-changepoint case, thereby broadening its scope and applicability.
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A Proofs

For notational convenience, throughout this section we write x ∈ X n to denote the tuple
(x1, . . . , xn).

A.1 Proving coverage guarantees of CONCH confidence sets

A.1.1 Proof of Theorem 3.1

First, observe that under the null H0t, π(X) d= X for any π ∈ Πt. We define a function
pt : X n → [0, 1] by

pt(x) := 1
|Πt|

∑
π∈Πt

1 {St(π(x)) ≤ St(x)} .

Further, note that pt ≡ pt(X). Therefore,

Pt (pt(X) ≤ α) = 1
|Πt|

∑
π∈Πt

Pt (pt(π(X)) ≤ α)

= Et

 1
|Πt|

∑
π∈Πt

1 {pt(π(X)) ≤ α}


= Et

 1
|Πt|

∑
π∈Πt

1

 1
|Πt|

∑
π′∈Πt

1 {St(π′(x)) ≤ St(π(x))} ≤ α


 ≤ α,

where the penultimate step follows by noting that π◦Πt = Πt, and the last inequality follows
by Harrison [2012, Lemma 3]. This completes the proof. □

A.1.2 Proof of Theorem 3.2

Given permutations π1,t, . . . , πM,t ∈ Πt, we define the fucntion

p̃t(x; π1,t, . . . , πM,t) := 1 +∑M
k=1 1 {st(πk,t(x)) ≤ st(x)}

1 + M
,

Consider an additional uniform draw π0,t from Πt.

Hence, note that with π1,t, . . . , πM,t
iid∼ Unif(Πt), we have that

(π1,t, . . . , πM,t) d= (π0,t ◦ π1,t, . . . , π0,t ◦ πM,t).
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Moreover, conditional on π0,t, π1,t, . . . , πM,t, X d= π0,t(X) under the null H0,t. Consequently,

p̃t(X; π1,t, . . . , πM,t) d= p̃t(X; π0,t◦π1,t, . . . , π0,t◦πM,t) d= p̃t(π0,t(X); π0,t◦π1,t, . . . , π0,t◦πM,t).

Finally, note that for p̃t, defined in (3.3), p̃t ≡ p̃t(X; π1,t, . . . , πM,t), and therefore,

p̃t(X; π1,t, . . . , πM,t) d= p̃t(π0,t(X); π0,t ◦ π1,t, . . . , π0,t ◦ πM,t)

= 1 +∑M
k=1 1 {st(πk,t(X)) ≤ st(π0,t(X))}

M + 1

=
∑M

k=0 1 {st(πk,t(X)) ≤ st(π0,t(X))}
M + 1 ,

i.e., the rank of st(π0,t(X)) in the exchangeable collection {st(π0,t(X)), st(π1,t(X)), . . . , st(πM,t(X))}.
Consequently,

Pt (p̃t = p̃t(X; π1,t, . . . , πM,t) ≤ α) ≤ α.

This completes the proof. □

A.1.3 Proof of Theorem 3.3

We begin by letting F denote the distribution of St(π(X)) conditional on the multisets
Mleft := {X1, . . . , Xt} and Mright := {Xt+1, . . . , Xn}, where π ∼ Unif(Πt). Then

p̄t = lim
y↑St(X)

F (y) + U
(
F (St(X))− lim

y↑St(X)
F (y)

)
.

UnderH0,t, we have St(X) d= St(π(X)) conditional on Mleft and Mright. Hence, by Dandapan-
thula and Ramdas [2025, Lemma E.1], p̄t, conditional on Mleft and Mright, follows Unif[0, 1]
(see also Brockwell, 2007). Therefore,

Pt(p̄t ≤ α) = Et[Pt(p̄t ≤ α | {X1, . . . , Xn})] = Et[α] = α.

This completes the proof.

A.2 Proving properties of the CPP score and optimality results

A.2.1 Proof of Proposition 4.1

The first part of the result follows immediately by noting that when St satisfies the t-wise
symmetry assumption in (4.1), then by the definitions of conformal p-values in (3.2) and
(3.3), pt and p̃t are identically equal to 1, as required.
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For the second part, fix t ∈ [n − 1]. We prove the result for CONCH, noting that it holds
identically for CONCH-MC. By definition (see (3.2)),

pt,1 = 1
|Πt|

∑
π∈Πt

1 {St(π(X)) ≤ St(X)} , pt,2 = 1
|Πt|

∑
π∈Πt

1 {f(St(π(X))) ≤ f(St(X))} .

Since f is non-decreasing,

St(π(X)) ≤ St(X) =⇒ f(St(π(X))) ≤ f(St(X)),

and therefore pt,1 ≤ pt,2. As this holds for all t ∈ [n− 1], it further follows that C1 ⊆ C2.

A.2.2 Proof of Lemma 4.2 (conformal NP lemma)

We consider the following hypothesis testing problem:

H′
0 : X ∼ ⊗t

j=1P0 ×⊗n
j=t+1P1 v.s. H′

1 : X ∼ ⊗r
j=1P0 ×⊗n

j=r+1P1.

Given samples X ∈ Rn, observe that

d(P0,r × P1,r)
d(P0,t × P1,t)

(X) =
∏

i≤r f0(Xi)
∏

i>r f1(Xi)∏
i≤t f0(Xi)

∏
i>t f1(Xi)

= s⋆(X)−1.

By the Neyman–Pearson lemma [Lehmann and Romano, 2005, Theorem 3.2.1 (ii)], any test
ϕ(X) that attains exact validity at level α under H′

0 and satisfies

ϕ(X) =


1, if s⋆(X)−1 > τα,

0, if s⋆(X)−1 < τα,

for an appropriate threshold τα ∈ R, is most powerful for testing H′
0 against H′

1.

As discussed in Section 4.1, the test ϕt(·; s) = 1 {pt(s) ≤ α} controls the Type I error exactly
at level α under H′

0 for any score function s. Therefore, to establish the optimality of s⋆, it
suffices to show that ϕt(·; s⋆) admits the same form as the Neyman–Pearson test.

Define Xπ = π(X) for π ∼ Unif(Πt), and let Fs⋆(Xπ) denote the conditional cumulative
distribution function of s⋆(Xπ) given X. Set

τα := inf{y ∈ R : Fs⋆(Xπ)(y) ≥ α}.
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By the definition of pt in (4.2), we have

s⋆(X)−1 > τα =⇒ pt(s⋆) ≤ α,

s⋆(X)−1 < τα =⇒ pt(s⋆) > α,

as required. This completes the proof. □

A.2.3 Proof of Theorem 4.3

By Proposition (ii), the CONCH confidence sets are invariant under any strictly increasing
transformation of the score function. Therefore, it suffices to prove this result for SOPT.

Since only the t-th coordinate of CPP score St determines the CONCH p-value pt defined in
(3.2), with the notation laid out in Section 4.1, we can write

n− EH0,ξ ∩ PIID [CCONCH
1−α (S)] =

n∑
t=1

EH0,ξ ∩ PIID [1 {pt(St) ≤ α}].

Finally, noting that for any j ∈ [n−1], H0,j ∩ PIID = H′
j and recalling that the p-value pt(St)

must be valid under H′
t, applying Lemma 4.2, the optimal form of SOPT

t follows readily.

A.3 Proof of Theorem 5.1 (Universality Theorem)

The proof of this universality theorem is inspired by the classical universality result for full-
conformal procedures in the predictive inference framework (see Vovk et al., 2005, Chap-
ter 2.4; Angelopoulos et al., 2024, Theorem 9.6).

Based on the given confidence set C, we define a CPP score

St(x) = 1 {t ∈ C(x)} ∈ {0, 1},

for any t ∈ [n − 1]. We will show that the CONCH confidence set constructed from this
score, denoted CCONCH

1−α , coincides exactly with the given confidence set C.

We first show that CCONCH
1−α (X) ⊇ C(X); that is, if t ∈ C(X), then it holds that pt > α, where

pt is as defined in (3.2). This is immediate by observing that if t ∈ C(X), then St(X) = 1,
and consequently,

pt = 1
|Πt|

∑
π∈Πt

1 {St(π(X)) ≤ St(X)} = 1
|Πt|

∑
π∈Πt

1 {St(π(X)) ≤ 1} = 1.
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Next, we show that CCONCH
1−α (X) ⊆ C(X), i.e., if t /∈ C(X), then pt ≤ α. To that end, we

first claim that for any t ∈ [n− 1] and any vector x ∈ X n,

1
|Πt|

∑
π∈Πt

1 {t ∈ C(π(x))} ≥ 1− α. (A.1)

We now prove this claim. Fix t ∈ [n−1], and sample π uniformly from the set of permutations
Πt. Define X̃ := (X̃1, . . . , X̃n) := π(x). Conditional on the multisets {x1, . . . , xt} and
{xt+1, . . . , xn}, we have

X̃1, . . . , X̃t are exchangeable, and X̃t+1, . . . , X̃n are exchangeable.

Moreover, conditional on the multisets, (X̃1, . . . , X̃t) and (X̃t+1, . . . , X̃n) are independent,
implying that the sampling process of X̃ satisfies Assumption 1. Consequently,

Pπ∼Unif(Πt)
(
t ∈ C(X̃)

∣∣∣ {x1, . . . , xt}, {xt+1, . . . , xn}
)
≥ 1− α,

or equivalently, (A.1) holds.

Returning to the main proof, observe that if t /∈ C(X), then St(X) = 0. Consequently,

pt = 1
|Πt|

∑
π∈Πt

1 {St(π(X)) ≤ St(X)}

= 1
|Πt|

∑
π∈Πt

1 {St(π(X)) ≤ 0} = 1
|Πt|

∑
π∈Πt

1 {t /∈ C(π(X))} ≤ α,

where the last step follows from (A.1). This completes the proof. □

B Additional Experiments

B.1 Gaussian mean-shift: comparison with Dandapanthula and
Ramdas [2025]

In the Gaussian mean-shift setting described in Section 7.1.1, we compare our framework
against the changepoint localization method of Dandapanthula and Ramdas [2025], which
also constructs distribution-free confidence sets for changepoints using a matrix of conformal
p-values. Figure 6 displays the p-value distributions from both methods. Their approach
yields a confidence set over [362, 432], which is broader than the widest interval obtained by
CONCH (using the weighted-mean score).
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Figure 6: p-value distributions from Dandapanthula and Ramdas [2025] and CONCH under
the Gaussian mean-shift model.

B.2 Two urns model: effect of dissimilarity between P0,ξ and P1,ξ

on confidence set length

While we have demonstrated the performance of CONCH on a variety of changepoint
detection tasks, our experiments so far have focused on i.i.d. settings, that is, changepoint
models within PIID. In what follows, we go beyond the i.i.d. assumption and show that the
CONCH framework requires only exchangeability to produce valid confidence sets.

To illustrate this, we evaluate the performance of the CONCH confidence sets on a two-urn
model with finite populations. Specifically, we consider two urns, each containing 2500 balls
colored either red or blue. The proportions of red balls in the first and second urns are
0.5− δ and 0.5 + δ, respectively, for some δ ∈ (0, 0.5). We draw balls without replacement:
the first ξ = 350 draws come from urn 1, and the remaining from urn 2, yielding a total of
n = 800 observations. Our goal is to detect the changepoint ξ. We use the weighted mean
difference as the CPP score, and for each δ ∈ {0.05, 0.10, . . . , 0.50}, we run the CONCH-MC
algorithm (Algorithm 2) with M = 300 permutations to obtain confidence sets.

When δ is small, the pre-change and post-change distributions are nearly indistinguishable.
Consequently, no method can sharply localize the changepoint, including CONCH confi-
dence sets. As δ increases, the two distributions become more distinct. In the extreme case
δ = 1, the first urn contains only blue balls and the second only red balls, allowing perfect
localization with absolute confidence. Accordingly, the average length of the CONCH confi-
dence sets decreases with δ, as shown in the right panel of Figure 7, where the shaded region
denotes one standard error around the mean. Across the whole collection of δ values, the
true change-point ξ = 350 lies within the reported confidence set, demonstrating the validity
of our procedure (left panel of Figure 7).
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Figure 7: Two-urn changepoint experiment: CONCH confidence sets across δ values. Left:
confidence sets always contain ξ = 350; right: average confidence set length decreases as
dissimilarity δ increases.

B.3 MNIST: detect change in digits

We conduct a simulation based on the MNIST handwritten digits dataset [Deng, 2012] to
evaluate the performance of CONCH for a digit shift localization. In particular, suppose we
observe a sequence of 1, 000 images: the first ξ = 400 observations consist of i.i.d. samples
of the digit “1”, and the latter observations are i.i.d. samples of the digit “7” (Figure 8).

idx 398 (pre) idx 399 (pre) idx 400 (pre) idx 401 (post) idx 402 (post)

Images around changepoint =400

Figure 8: Illustration of MNIST changepoint setup: digit class shifts from ‘1’ to ‘7’ at ξ = 400
(n = 1000).

As in our main experiments, we use a classifier based log-likelihood ratio as CPP score in
our CONCH algorithm. Specifically, we employ a pretrained convolutional neural network
classifier to distinguish between the two digits; its logits define the CPP score, which is
then passed to CONCH to produce a confidence interval for the changepoint. Although the
handwritten digits “1” and “7” often exhibit substantial visual similarity, our approach accu-
rately detects the changepoint, yielding an exceptionally narrow, in fact singleton confidence
set {400} (Figure 9). We remark that the sharp localization here is partially a consequence
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of the strong classifier, which can confidently distinguish between the two digits. In the next
section, we investigate how classifier strength influences the width of CONCH confidence
sets on the CIFAR-100 dataset.
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Figure 9: p-values for digit shift detection in MNIST: from digit ‘1’ to digit ‘7’ at ξ = 400

B.4 CIFAR100: classifier strength affects power of CONCH

We simulate a class-shift scenario using the CIFAR-100 image dataset [Alex, 2009] to evaluate
CONCH under a challenging setting. Specifically, we construct a sequence of n = 1, 000
observations with a changepoint at ξ = 400: the pre-change distribution P0,ξ consists of i.i.d.
images of bears, while the post-change distribution P1,ξ consists of i.i.d. images of beavers
(Figure 10). Because bears and beavers share many visual attributes, accurately localizing
the changepoint is a non-trivial task.

t=399
cls=3

t=400
cls=3

t=401
cls=4

t=402
cls=4

t=403
cls=4

Figure 10: Illustration of CIFAR-100 changepoint setup: sequence shifts from bear images
to beaver images at ξ = 400 (n = 1000).

We pre-train a small three-block convolutional network with a lightweight classification head.
We first train this network for 5 epochs to obtain a weak classifier and then train it further
for an additional 20 epochs to obtain a stronger classifier. The resulting logits from each
model define a CPP score, which we pass to CONCH to produce a changepoint confidence
interval.
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Figure 11 reports the p-value distributions and confidence sets produced by CONCH. As
anticipated, the stronger classifier yields sharper separation between the two classes, leading
to a much narrower confidence set [398, 408] compared to the weaker model’s wider interval
[393, 427]. This experiment highlights both the sensitivity of CONCH to classifier quality
and its ability to localize changepoints even under subtle visual differences between classes.
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Figure 11: CONCH p-values for CIFAR-100 class shift (bear → beaver): weak vs. strong
classifiers over the full timeline (left) and a zoomed window around ξ = 400 (right).
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